Entropy Based Student’s t-Process Dynamical Model
نویسندگان
چکیده
منابع مشابه
Entropy operator for continuous dynamical systems of finite topological entropy
In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملentropy operator for continuous dynamical systems of finite topological entropy
in this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. it is shown that it generates the kolmogorov entropy as a special case. if $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملProperty (T) for C*-dynamical systems
In this paper, we introduce a notion of property (T) for a C<span style="font-family: txsy; font-size: 7pt; color: #000000; font-style: norm...
متن کاملENTROPY OF DYNAMICAL SYSTEMS ON WEIGHTS OF A GRAPH
Let $G$ be a finite simple graph whose vertices and edges are weighted by two functions. In this paper we shall define and calculate entropy of a dynamical system on weights of the graph $G$, by using the weights of vertices and edges of $G$. We examine the conditions under which entropy of the dynamical system is zero, possitive or $+infty$. At the end it is shown that, for $rin [0,+infty]$, t...
متن کاملmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2021
ISSN: 1099-4300
DOI: 10.3390/e23050560